Rabu, 12 Maret 2014

Contoh Makalah Persegi

 KATA PENGANTAR

Puji syukur kami panjatkan kepada kehadirat Allah SWT, yang telah mencurahkan segala nikmat dan karunia-NYA sehingga berkat rahmat dan ridho-NYA kami dapat menyelesaikan makalah ini dengan judul “PERSEGI”, untuk memenuhi salah satu tugas mata pelajaran Matematika.
Kami menyadari keterbatasan pengalaman, pengetahuan, kemampuan dalam penyusunan makalah ini. Oleh karena itu, saran dan kritik yang bersifat membangun  sangat diharapkan demi kesempurnaan penulisan di masa mendatang.
Akhirnya kami berharap semoga makalah ini bermanfaat bagi kita semua. Aamiin.

Bandung, Maret 2014

DAFTAR ISI

KATA PENGANTAR        i
DAFTAR ISI        ii
BAB I PENDAHULUAN        1
1.1.    Latar Belakang Masalah        1
1.2.    Rumusan Masalah        1
1.3.    Tujuan        1
BAB II PEMBAHASAN        2
2.1.    Pengertian Persegi        2
2.2.    Sifat-sifat persegi        2
2.3.    Contoh Soal         4
BAB III PENUTUP        7


BAB I
PENDAHULUAN


1.1.    Latar Belakang Masalah
Kita tahu bahwa di kehidupan ini tidak lepas yang namanya Matematika, karena dimana pun dan kapan pun kita pasti menggunakan ilmu Matematika. Dalam matematika dikenal beberapa bangun tiga dimensi yang memiliki panjang, lebar dan tinggi. Di dalam bangun datar terdiri berbagai sisi.
Dalam makalah ini yang dibahas adalah mengenai bangun datar. Bangun datar mempunyai bentuk yang berbeda dari segi sisi maupun sudut. Makalah ini membahas tentang bangun datar Persegi.

1.2.    Rumusan Masalah
1.     Apa yang dimaksud Persegi?
2.     Apa saja sifat-sifat Persegi?
3.    Berapa luas keliling dari Persegi?

1.3.    Tujuan
1.    Mengetahui bentuk bangun datar Persegi
2.    Mengetahui sifat-sifat dari Persegi
3.    Mampu menghitung luas dan keliling Persegi

BAB II
PEMBAHASAN


2.1.    Pengertian Persegi
Kita tentu pernah melihat bentuk-bentuk seperti papan catur, sapu tangan, atau ubin (lantai). Berbentuk apakah bangun-bangun tersebut? Bagaimana sisi-sisi bangun tersebut? Bangun-bangun yang disebutkan di atas adalah bangun yang berbentuk persegi. Perhatikan Gambar di bawah ini. Gambar di bawah ini adalah sebuah persegi ABCD. Bagaimana panjang setiap sisi dan besar setiap sudut persegi tersebut?
 
Contoh Makalah Persegi
Persegi
Jika kita mengamatinya dengan tepat, kalian akan memperoleh bahwa
1.    sisi-sisi persegi ABCD sama panjang, yaitu AB = BC = CD = AD;
2.    sudut-sudut persegi ABCD sama besar, yaitu sudut ABC = sudut BCD = sudut CDA = sudut DAB = 90°.

Dari uraian tersebut dapat kita katakan bahwa persegi merupakan persegi panjang dengan sifat khusus, yaitu keempat sisinya sama panjang. Persegi adalah bangun segi empat yang memiliki empat sisi sama panjang dan empat sudut siku-siku. Persegi dapat menempati bingkainya dengan delapan cara.

2.2.    Sifat-sifat persegi
Dapatkah kalian menunjukkan sifat-sifat persegi panjang yang dimiliki oleh persegi? Pada pembahasan sebelumnya, telah disinggung bahwa persegi merupakan persegi panjang dengan bentuk khusus, yaitu semua sisinya sama panjang. Oleh karena itu, semua sifat persegi panjang juga merupakan sifat persegi.

Sekarang, perhatikan Gambar di atas. Apa yang terjadi jika persegi ABCD dibalik menurut diagonal BD? Berdasarkan Gambar di atas, kita peroleh bahwa sudut ABD <---> sudut CBD, sehingga sudut ABD = sudut CBD dan sudut ADB <---> sudut CDB, sehingga sudut ADB = sudut CDB. Hal ini menunjukkan bahwa diagonal BD membagi dua sama besar sudut ABC dan sudut ADC.
Dengan cara yang sama, pasti kalian dapat membuktikan bahwa diagonal AC membagi dua sama besar sudut DAB dan sudut BCD. Sudut-sudut suatu persegi dibagi dua sama besar oleh diagonal-diagonalnya. Perhatikan Gambar di bawah. Gambar tersebut menunjukkan bangun persegi dengan diagonal AC dan BD yang berpotongan di titik O. Kita akan menunjukkan bahwa diagonal AC dan BD saling berpotongan tegak lurus membentuk sudut siku-siku.

 
Contoh Makalah Persegi


Dengan pusat titik O, putarlah persegi ABCD seperempat putaran berlawanan arah jarum jam. Kamu akan memperoleh bahwa
1.    sudut AOB <---> sudut BOC, sehingga sudut AOB = sudut BOC;
2.    sudut BOC <---> sudut COD, sehingga sudut BOC = sudut COD;
3.    sudut COD <---> sudut AOD, sehingga sudut COD = sudut AOD;
4.    sudut AOD <---> sudut AOB, sehingga sudut AOD = sudut AOB.

Karena persegi ABCD dapat tepat menempati bingkainya kembali, maka dikatakan bahwa sudut AOB = sudut AOD = sudut COD = sudut BOC. Telah kalian pelajari di bagian depan bahwa sudut satu putaran penuh = 360°. Akibatnya, sudut AOB = sudut AOD = sudut COD = sudut BOC = 360°/4 = 90°. Jadi, Diagonal-diagonal persegi saling berpotongan sama panjang membentuk sudut siku-siku.
Berdasarkan uraian di atas dapat disimpulkan sifat-sifat persegi sebagai berikut.
1.    Semua sifat persegi panjang merupakan sifat persegi.
2.    Suatu persegi dapat menempati bingkainya dengan delapan cara.
3.    Semua sisi persegi adalah sama panjang.
4.    Sudut-sudut suatu persegi dibagi dua sama besar oleh diagonal- diagonalnya.
5.    Diagonal-diagonal persegi saling berpotongan sama panjang membentuk sudut siku-siku.

2.3.    Contoh Soal :
Soal 1.
Diketahui keliling suatu persegi sebagai berikut.
a. K = 52 cm
b. K = 60 m
c. K = 128 cm
Tentukan ukuran sisi persegi dan luasnya.
Jawab:
a. untuk mencari keliling persegi gunakan persamaan:
K = 4s
52 cm = 4s
s = 52 cm/4
s = 13 cm
untuk mencari luas persegi gunakan persamaan:
L = s x s = s2
L = 13 cm x 13 cm
L = 169 cm2

b. untuk mencari keliling persegi gunakan persamaan:
K = 4s
60 cm = 4s
s = 60 cm/4
s = 15 cm
untuk mencari luas persegi gunakan persamaan:
L = s x s
L = 15 cm x 15 cm
L = 225 cm2

c. untuk mencari keliling persegi gunakan persamaan:
K = 4s
128 cm = 4s
s = 128 cm/4
s = 32 cm
untuk mencari luas persegi gunakan persamaan:
L = s x s = s2
L = 32 cm x 32 cm
L = 1.024 cm2

Soal 2.
Diketahui luas persegi sama dengan luas persegi panjang dengan panjang = 16 cm dan lebar = 4 cm. Tentukan keliling persegi tersebut.
Jawab:
Cari terlebih dahulu luas persegi yakni dengan persamaan:
Luas persegi panjang = Luas persegi
Luas persegi panjang = p x l
Luas persegi panjang = 16 cm x 4 cm
Luas persegi panjang = 64 cm2
Untuk mencari keliling persegi harus diketahui terlebih dahulu sisi dari persegi tersebut, yakni:
L = s2
64 cm2 = s2
s = 8 cm

K = 4s
K = 4 x 8 cm
K = 32 cm

BAB III
PENUTUP

Sifat-sifat yang dimiliki oleh bangun datar persegi adalah sebagai berikut :
1.    Semua sifat persegi panjang merupakan sifat persegi.
2.    Suatu persegi dapat menempati bingkainya dengan delapan cara.
3.    Semua sisi persegi adalah sama panjang.
4.    Sudut-sudut suatu persegi dibagi dua sama besar oleh diagonal- diagonalnya.
5.    Diagonal-diagonal persegi saling berpotongan sama panjang membentuk sudut siku-siku.

0 Responses to “Contoh Makalah Persegi”

Poskan Komentar

Sponsored by Jobs